Abstract

Priority-based Functional Reactive Programming (P-FRP) is a new functional programming formalism for developing safety-critical embedded systems. P-FRP allows static priority assignment and guarantees real-time response by preempting lower priority tasks. Due to the state-less nature of functional programs, preempted tasks in P-FRP are aborted and have to restart after the higher priority tasks have completed execution. Since the execution semantics of P-FRP are different from the classical preemptive model of execution, existing utilization based sufficient conditions cannot be applied. In this paper, we derive a new utilization based sufficient schedulability condition for P-FRP, and validate it using experimental task sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.