Abstract

Demand response (DR) programs are designed to affect the energy consumption behavior of end-users in smart grid. However, most existing pricing designs for DR programs ignore the influence of end-users’s diversity and personal preference. Thus, in this paper, we investigate an incentive pricing design based on the utility maximization rule with consideration of end-users’ preference and appliances’ operational patterns. In particular, the utility company determines the pricing policy by trading off the budget revenue and social obligation, while each end-user aims to maximize their own utility profits with high satisfaction level by scheduling multiclass appliances. We formulate the conflict and cooperative relationship between the utility company and end-users as a Stackelberg game, and the equilibrium points are obtained by the backward induction method, which exists and is unique. At the equilibrium, the utility company adopts real-time pricing (RTP) scheme to coordinate end-users to fulfill the benefit of themselves, i.e., under such price, end-users automatically maximize overall utility profits of the overall system. We propose a distributed algorithm and an adaptive pricing scheme for the utility company and end-users to jointly achieve the best performance of the entire system. Finally, extensive simulation results based on real operation data show the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.