Abstract
The optimization of Raman instruments greatly expands our understanding of single-cell Raman spectroscopy. The improvement in the speed and sensitivity of the instrument and the implementation of advanced data mining methods help to reveal the complex chemical and biological information within the Raman spectral data. Here we introduce a new Matlab Graphical User-Friendly Interface (GUI), named “CELL IMAGE” for the analysis of cellular Raman spectroscopy data. The three main steps of data analysis embedded in the GUI include spectral processing, pattern recognition and model validation. Various well-known methods are available to the user of the GUI at each step of the analysis. Herein, a new subsampling optimization method is integrated into the GUI to estimate the minimum number of spectral collection points. The introduction of the signal-to-noise ratio (SNR) of the analyte in the binomial statistical model means the new subsampling model is more sophisticated and suitable for complicated Raman cell data. These embedded methods allow “CELL IMAGE” to transform spectral information into biological information, including single-cell visualization, cell classification and biomolecular/ drug quantification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.