Abstract

Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a two-dimensional EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics (IBK) with a low-cost wireless EEG headset. We evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post- BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram (EOG) on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call