Abstract

Abstract The main objectives of this study were to (1) design and develop a low cost seismic source for shallow seismic surveys and (2) test the performance of the developed source at a test site. The surface seismic source, referred to here as a university-developed seismic source is based upon the principle of an accelerated weight drop. A 30 kg activated mass is lifted by a mechanical rack and pinion gear and is accelerated by a mounted spring. When the mass is released from 0.5 m above the surface, it hits a 30 kg base plate and energy is transferred to the ground, generating a seismic wave. The developed source is portable, environmentally friendly, easy to operate and maintain, and is a highly repeatable impact source. To compare the developed source with a sledgehammer source, a source test was performed at a test site, a study site for mapping a major fault zone in southern Thailand. The sledgehammer and the developed sources were shot along a 300 m long seismic reflection profile with the same parameters. Data were recorded using 12 channels off-end geometry with source and receiver spacing of 5 m, resulting in CDP stacked sections with 2.5 m between traces. Source performances were evaluated based on analyses of signal penetration, frequency content and repeatability, as well as the comparison of stacked sections. The results show that both surface sources are suitable for seismic studies down to a depth of about 200 m at the site. The hammer data are characterized by relatively higher frequency signals than the developed source data, whereas the developed source generates signals with overall higher signal energy transmission and greater signal penetration. In addition, the repeatability of the developed source is considerably higher than the hammer source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.