Abstract

A class of enzymes, called DNA topoisomerases, is responsible for controlling the topological state of cellular DNA. Among these, type IA topoisomerases form a vast family that is present in all living organisms, including higher eukaryotes, in which they play important roles in genome stability. The known 3D structures of three of these enzymes indicate that they share a common toroidal architecture. We previously showed that the toroidal structure could be split off from the core enzyme of Thermotoga maritima topoisomerase I by limited proteolysis. This structure is produced by the association of two tandemly repeated elementary folds in a head-to-tail orientation. By using a combination of structural and sequence data analysis, we show that the elementary fold of about 150 amino acid residues, referred to as the topofold, is likely to be present in the whole topoisomerase IA family. Within each enzyme, the successive topofolds share two conserved sequence motifs located at the base of the ring, and referred to as the MI and MII motifs. However, the overall sequences of the folds have largely diverged. By contrast, secondary and tertiary structures appear remarkably conserved. We suggest that this twofold repeat has evolved by gene duplication/fusion from an ancestral topofold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.