Abstract

Robotic systems for chemical synthesis are growing in popularity but can be difficult to run and maintain because of the lack of a standard operating system or capacity for direct access to the literature through natural language processing. Here we show an extendable chemical execution architecture that can be populated by automatically reading the literature, leading to a universal autonomous workflow. The robotic synthesis code can be corrected in natural language without any programming knowledge and, because of the standard, is hardware independent. This chemical code can then be combined with a graph describing the hardware modules and compiled into platform-specific, low-level robotic instructions for execution. We showcase automated syntheses of 12 compounds from the literature, including the analgesic lidocaine, the Dess-Martin periodinane oxidation reagent, and the fluorinating agent AlkylFluor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.