Abstract
There are some methods to prepare superwetting surfaces with underwater superoleophobicity (UWSOB) or underoil superhydrophobicity (UOSHB), but it is still thorny to put forward a universal strategy for constructing dual superlyophobic surfaces in oil-water systems due to a thermodynamic contradiction. Herein, a universal strategy was proposed to prepare the dual superlyophobic surfaces in oil-water systems only via delicately controlling surface chemistry, that is, adjusting the ratios of superhydrophilic and superhydrophobic counterparts in the spray solution. Three types of materials, attapulgite (APT), TiO2, and loess, were chosen to prepare a diverse series of mixed coatings (mass gradient of superhydrophobic counterparts from 0 to 100 wt %). With the proportion of each superhydrophobic counterpart increasing, the underwater oil contact angle (θo/w*) of each mixed coating slightly decreased but still was more than 150°, that is, UWSOB. In contrast, the underoil water contact angle (θw/o*) was significantly improved, realizing the transformation from UOHL (or UOHB) to UOSHB. More importantly, the respective mass ratios of superhydrophobic counterparts in the resulting mixed coatings of APT, TiO2, and loess were finally determined to be 0.3, 0.4, and 0.2, respectively. Taking APT as a model, a train of mixed APT coatings with different superhydrophobic components were systematically characterized and analyzed. Finally, the prepared superlyophobic separation mesh in oil-water systems was applied to the separation of various surfactant-stabilized oil-water emulsions. We envision that this universal strategy we proposed will show a significant application potential in addressing scientific and technological challenges in the field of interfacial chemistry such as oil-water separation, microfluidics, microdroplet manipulation, antifogging/icing, cell engineering, drag reduction, and so forth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.