Abstract

Two-dimensional (2D) carbon materials have attracted enormous attention, but the complicated synthesis methods, inhomogeneous structure and uncontrollable properties still limit their use. Here we report a universal protocol for fabricating a series of heteroatom-doped 2D porous polymers, including pyrrole and indole as nitrogen-dopant sources, and 3,4-ethoxylene dioxy thiophene as a sulfur-dopant source by a simple chemical crosslinking reaction. This bottom-up strategy allows for the large-scale synthesis of functionalized ultrathin carbon nanosheets with a high heteroatom doping content and abundant porosity. Consequently, the obtained N-doped carbon-rich nanosheets (NCNs) sample has a specific capacity of 573.4 mAh g−1 at 5 A g−1 as an anode for lithium-ion capacitors (LICs), and the optimized sample has a specific capacitance of 100.0 F g−1 at 5 A g−1 when used as a cathode for a LIC. A dual-carbon LIC device was also developed that had an energy density of 168.4 Wh kg−1 at 400 W kg−1, while maintaining outstanding cycling stability with a retention rate of 86.3% after 10 000 cycles. This approach has the potential to establish a way for the precise synthesis of substantial amounts of 2D functionalized carbon nanosheets with the desired structure and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.