Abstract
Critical transitions are observed in many complex systems. This includes the onset of synchronization in a network of coupled oscillators or the emergence of an epidemic state within a population. "Explosive" first-order transitions have caught particular attention in a variety of systems when classical models are generalized by incorporating additional effects. Here, we give a mathematical argument that the emergence of these first-order transitions is not surprising but rather a universally expected effect: Varying a classical model along a generic two-parameter family must lead to a change of the criticality. To illustrate our framework, we give three explicit examples of the effect in distinct physical systems: a model of adaptive epidemic dynamics, for a generalization of the Kuramoto model, and for a percolation transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.