Abstract

Transmission beams have been proposed for ultra-high dose (or FLASH) proton planning, limiting the organ sparing potentials of proton therapy. By pulling back the ranges of the highest energy proton beams and compensating proton ranges to adapt to the target distally, the exit dose of proton beams can be eliminated to better protect organs at risk while still preserving FLASH dose rate delivery. An inverse planning tool was developed to optimize intensity modulated proton therapy using a single-energy layer for FLASH radiation therapy planning. The range pull-backs were calculated to stop single-energy proton beams at the distal edge of the target. The spot map and weights of each field were optimized to achieve a sufficient dose rate using proton beam Bragg peaks. A C-shape target in phantom, along with 6 consecutive lung cancer patients previously treated using proton stereotactic body radiation therapy were planned using this novel Bragg Peak method and also transmission technique. Dosimetry characteristics and 3-dimensional dose rate were investigated. The minimum monitor units (MU) for transmission and Bragg peak plans were 400 MU/spot and 1200 MU/spot, respectively, corresponding to spot peak dose rates of 670 GyRBE (relative biological effectiveness) per second and 1950 GyRBE per second. Bragg peak plans yield a generally comparable target uniformity while significantly reducing dose spillage volume from the low to medium dose level. For all the 6 lung cases delivery of 34 GyRBE in 1 fraction, assessing Radiation Therapy Oncology Group 0915 constraints, the lung V7GyRBE volume was reduced by up to 32% (P=.001) for Bragg peak plans. The transmission plans tended to generate 2.4% higher FLASH dose rate coverage (V40GyRBE/s) versus Bragg peak plans over the major organs at risk. However, Bragg peak plans could also reach the FLASH radiation therapy threshold of V40GyRBE/s using a higher MU/spot and sophisticated dose-rate optimization algorithm. This first proof-of-concept study has demonstrated this novel method of combining range pull-back and powerful inverse optimization capable of achieving FLASH dose rate based on currently available machine parameters using a single-energy Bragg peak. Similar target coverage and uniformity can be maintained by Bragg peak FLASH plans while substantially improving the sparing of organs at risk compared with transmission plans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call