Abstract

Abstract A simple quadrilateral shell element is proposed in this work to study large deformations and large rotations of membrane/plate/shell structures. There are three merit characters in this element: locking-free; immune to mesh distortions; and robust to surface tessellations. Numerical issues in plates/shell elements such as shear-locking and thickness-locking problems are resolved, and quadrilateral area coordinates are adopted to solve the mesh distortion issues. This element can be adopted to curved shell structures, and warped deformations can be well described. Moreover, even if a shell structure cannot be easily tessellated by high quality quadrilateral polygons, it can still be discretized by a mesh consisting of high-quality triangular and quadrilateral elements, then this element can work together with a corresponding triangular element to provide accurate results on this combined mesh, and the degree-of-freedom for the discretized system is no more than several times of the number of nodes. Numerical tests validate the effectiveness, efficiency, and universality of this element in engineering scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.