Abstract
Organic electrochemical transistors (OECT) have shown great potential in diverse applications; however, in many OECTs, their slow transient response has thus far limited their practical use. One reason for the slow response is the complex interplay between lateral and vertical ion transport that has so far been poorly understood. In this work, we study the impact of lateral ion transport on OECT transient response, introduce a robust pre-charging method to manipulate the slow lateral ion transport. This approach leads to quicker ion redistribution and improved switching speeds. We show the general utility of pre-charging method in enhancing the switching speeds across various material systems, characterized by both low and high ion mobilities, and across different device architectures, achieving nearly symmetric speeds for both on-switching and off-switching. Moreover, we showcase the efficacy of the pre-charging method in enabling slow OECTs to capture rapid signals in real-world applications. Our findings present a groundbreaking strategy for enhancing the response times of OECT devices and deepening our understanding of the transient mechanisms in OECT device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.