Abstract

The development of biomimetic materials with anisotropic topological structure and wide range of adjustable mechanical properties is central to tissue engineering fields. In this work, on the basis of a stiff/stretchable dually crosslinked hydrogel, we paid more attention to the synergistic contribution of the confined drying and re-swelling (CDR) effect and Hofmeister effect to its micro structures, polymer aggregation states and mechanical strength. Specifically, by changing the pre-strains of the CDR procedure and the soaking time during the salting-out procedure, the arrangement structure orientation, chain-entanglement density, and supramolecular interaction strength within the polymer can be adjusted by changing the processing sequence of the two procedures, so that to obtain anisotropic biomimetic hydrogels with adjustable mechanical properties in a wide range. Thus, this engineered anisotropic polymer can mimic the natural tissues’ mechanical properties in regeneration. Moreover and importantly, these anisotropic hydrogels exhibit prominent self-recovery properties. In summary, with the integration of molecular and structural engineering approaches, this study presents a universal strategy for developing anisotropic hydrogels, which could be widely used as biomimetic substitutes with anisotropic features in tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.