Abstract

Although promising, it is challenging to develop a simple and universal method for the high‐efficiency delivery of biomacromolecules into diverse cells. Here, a universal delivery platform based on gold nanoparticle layer (GNPL) surfaces is proposed. Upon laser irradiation, GNPL surfaces show such good photothermal properties that absorption of the laser energy causes a rapid increase in surface temperature, leading to enhanced membrane permeability of the cultured cells and the diffusion of macromolecules into the cytosol from the surrounding medium. The high‐efficiency delivery of different macromolecules such as dextran and plasmid DNA into different cell types is achieved, including hard‐to‐transfect mouse embryonic fibroblasts (mEFs) and human umbilical vein endothelial cells (HUVECs), while cell viability is well maintained under optimized irradiation conditions. The platform vastly outperforms the leading commercial reagent, Lipofectamine 2000, especially in transfecting hard‐to‐transfect cell lines (plasmid transfection efficiency: ≈53% vs ≈19% for mEFs and ≈44% vs ≈8% for HUVECs). Importantly, as the gold nanoparticles (GNPs) constituting the GNPL are firmly immobilized together, the potential cytotoxicity caused by endocytosis of GNPs is effectively avoided. This platform is reliable, efficient, and cost‐effective with high‐throughput and broad applicability across different cell types, opening up an innovative avenue for high‐efficiency intracellular delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call