Abstract

Protein functionalized surface has the potential to develop new assays for determining the drug-like properties of potential compounds and discovering specific partners of G protein-coupled receptors (GPCRs). However, a universal method for purifying and immobilizing functional GPCRs has remained elusive. To this end, we developed a general and rapid way to purify and immobilize β2-adrenergic receptor (β2AR) by silicon-specific peptide. We screened CotB1p as a tag from six silica-binding peptides (minTBP-1, CotB1p, SB7, Car9, and Si4–1) by examining their affinity to macroporous silica gel. We investigated the adsorption and desorption of CotB1p-tagged β2-adrenoceptor (β2AR-CotB1p) under diverse conditions to propose a protocol for receptor purification and immobilization. Under optimized conditions, β2AR immobilization were achieved by directly immersing cell lysates harboring the receptor with silica gel, and the elution of the receptor without demonstratable contaminants was realized by including l-arginine/L-lysine in the elutes. This allows purification of the receptor from Escherichia coli (E.coli) lysates with a purity of 95 %. The immobilized receptor was utilized as a stationary phase to reveal the tag impact on ligand-binding outputs by comparing the CotB1p-strategy with a typical covalent method. The KAs of salbutamol, chlorprenaline, tulobuterol, and terbutaline on β2AR-CotB1p column were 1.26 × 106, 6.59 × 106, 7.90 × 106, and 8.97 × 105 M−1 respectively, which were two orders of magnitude higher than those on the Halo-β2AR column. The whole immobilization was accomplished within 30 min without the requirement of any special treatment, resulting in enhanced accuracy for determining receptor-ligand binding parameters. Taken together, CotB1p-mediated strategy is simple, rapid, and universal for purification or immobilization of unstable biomolecules like GPCRs for analytical and biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.