Abstract

AbstractA seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.