Abstract
We propose a simple Hamiltonian to describe the motion and the merging of Dirac points in the electronic spectrum of two-dimensional electrons. This merging is a topological transition which separates a semi-metallic phase with two Dirac cones from an insulating phase with a gap. We calculate the density of states and the specific heat. The spectrum in a magnetic field B is related to the resolution of a Schrodinger equation in a double well potential. They obey the general scaling law e_n \propto B^{2/3} f_n(Delta /B^{2/3}. They evolve continuously from a sqrt{n B} to a linear (n+1/2)B dependence, with a [(n+1/2)B]^{2/3} dependence at the transition. The spectrum in the vicinity of the topological transition is very well described by a semiclassical quantization rule. This model describes continuously the coupling between valleys associated with the two Dirac points, when approaching the transition. It is applied to the tight-binding model of graphene and its generalization when one hopping parameter is varied. It remarkably reproduces the low field part of the Rammal-Hofstadter spectrum for the honeycomb lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.