Abstract

The emerging materials of semiconductor quantum dots/graphene oxide (QDs/GO) hybrid composites have recently attracted intensive attention in materials science and technology due to their potential applications in electronic and photonic devices. Here, a simple and universal strategy to produce DNA-programmed semiconductor quantum dots/graphene oxide (QDs/GO) hybrid composites with controllable sizes, shapes, compositions, and surface properties is reported. This proof-of-concept work successfully demonstrates the use of sulfhydryl modified single-stranded DNA (S-ssDNA) as a ‘universal glue’ which can adsorb onto GO easily and provide the growth sites to synthesize CdS QDs, CdSe QDs, CdTe QDs and CdTeSe QDs with distinctive sizes, shapes and properties. Also, adapting this method, other graphene oxide-based hybrid materials which are easily synthesized in aqueous solution, including oxides, core–shell structure QDs and metal nanocrystals, would be possible. This method provided a universal strategy for the synthesis and functional realization of graphene -based nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.