Abstract

The vigorous development of two-dimensional materials puts forward higher requirements for more effective modulation of physical properties. Here, we utilize simple treatments for the emerging graphdiyne (GDY) materials to achieve dual control of magnetic and electrical properties through Fe/N codoping. The as-prepared Fe-N-GDY is confirmed as a highly conductive ferromagnetic semiconductor. The Curie temperature close to 205 K endows the materials promising application prospects in spin-related devices. Benefiting from uniform Fe/N comodification and performance optimization, such material could be used as carbon-based conductive ink for printed devices, such as a printed field-effect transistor (FET), which achieves a high mobility of 215 cm2 V-1 s-1. Even when printing Fe-N-GDY ink to assemble flexible FETs with an ionic liquid gate, the excellent transfer characteristics can be maintained and demonstrate stability with temperature. Those results provide a facile way to modulate GDY's properties and promote its application potential in large-area, multifunctional integrated electronic devices, including wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.