Abstract

We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS‐CoV‐2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one‐round SELEX experiments using five different trimeric spike proteins from variants, followed by high‐throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed K d values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS‐CoV‐2 with K d values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well‐suited for molecular recognition of rapidly evolving targets such as those found in SARS‐CoV‐2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.