Abstract

AbstractLarge‐scale energy storage with aqueous Zn batteries (AZBs) have bright future, but their practical application is impeded by H2 evolution reaction (HER), which results in poor stability of Zn–metal anodes. Here, using linear sweep voltammetry in dilute salt aqueous electrolytes, it is discovered that as the salt concentration decreases, HER is gradually suppressed, which is contrary to prior beliefs. Combining calculations and experiments, it is demonstrated that HER derives predominantly from the sum of Zn2+‐solvated water rather than the average amount of water in the Zn2+‐solvation structural unit or free water without interaction with Zn2+, which answers the puzzle from above. This result, which differs fundamentally from the previous understandings, sheds new light on the mysterious role of water chemistry in controlling HER and contributes to a more rational design of advanced electrolytes for AZBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call