Abstract

AbstractRecent years, molecular detection technology has been playing an unprecedentedly important role in disease prevention and public health. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems such as CRISPR/Cas12a and CRISPR/Cas13a, have been increasingly used in the detection of nucleic acid molecules because of its collateral cleavage ability in recent years. Herein, we develop a universal CRISPR/Cas12a‐assisted methodology based on a nucleic acid duplex switch structure that can distinguish different categories of targets, such as DNA, RNA and small molecules. It is worth noting that for nucleic acid detection, this method can significantly identify single base substitutions with high specificity, compared with other Cas12a‐assisted biosensing systems. The experimental results suggest that this method has great specificity for different targets, promising to be applied to rapid molecular diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.