Abstract
This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is characterized by three fundamental parameters expressing (a) the graph topology (through the “incidence matrix”), (b) the edge weights (with dynamic external weights’ setting capability), and (c) the dynamic reconfigurability through external input(s) of the source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed to determine the three fundamental parameters (of the mathematical model developed) for all types of graphs regardless of their topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of two well-known concepts based on neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.