Abstract

Protein glycosylation and other post-translational modifications are involved in many biological processes including growth, development and immune responses, and glycoproteins are also known as biomarkers for cancer, diabetes and cardiovascular diseases. In traditional lateral flow immunoassay (LFIA) for glycoprotein detection, capture antibody (CA) is often required to label targets. However, the production of CA is complicated and expensive, restricting the wide application of LFIA. In this study, we developed a universal boronate affinity CA-independent LFIA method for glycoprotein detection. 4-Mercaptophenylboronic acid (4-MPBA)-modified Au nanoparticles (namely 4-MPBA-AuNPs) were used as LFIA labels, which could generate colorimetric signal and showed outstanding capability to bind glycoprotein. Compared with CA, 4-MPBA molecular as a glycoprotein recognition element had more prominent advantages, e.g., low cost, easy availability and good quality controllability. Take carcinoembryonic antigen (CEA) as model glycoprotein, the limit of detection of this CA-independent LFIA was 1.25 ng/mL by naked eyes, which was 8-fold lower than conventional CA-dependent sandwich LFIA. Significantly, the developed 4-MPBA-AuNPs-based CA-independent LFIA successfully detected 23 CEA-positive samples from 64 suspected human serum samples within 50 min in a nonlaboratory environment, with a 100% accuracy compared to clinical detection method. Therefore, this diagnostic platform could provide an effective tool for point-of-care glycoprotein detection with excellent reproducibility and high specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call