Abstract

The large amount of power electronic submodules and semiconductor switching events in the Modular Multilevel Converter (MMC) introduces several challenges for efficient and accurate Electro-Magnetic Transient (EMT) simulation. Research efforts have focused on developing Average Value Models (AVMs) of MMC that enable fast and accurate dynamic simulation of the converter. This paper proposes a universal blocking-module-based AVM, which can simulate the MMC of different submodule types and provide accurate results for the MMC operating in both blocking and de-blocking modes. An analytical approach is included in the model to calculate the semiconductor losses of different submodule types in the MMC. The proposed model is validated against a detailed switching-based model and the state-of-the-art AVMs in a 41-level two-terminal MMC-HVDC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.