Abstract
We give a computational interpretation to an abstract formulation of Krull's theorem, by analysing its classical proof based on Zorn's lemma. Our approach is inspired by proof theory, and uses a form of update recursion to replace the existence of maximal ideals. Our main result allows us to derive, in a uniform way, algorithms which compute witnesses for existential theorems in countable abstract algebra. We give a number of concrete examples of this phenomenon, including the prime ideal theorem and Krull's theorem on valuation rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.