Abstract

This paper presents analysis and design of a resonant AC/DC converter topology, suitable for use in an advanced single-phase, sine-wave voltage, high-frequency power distribution system of the type that was proposed for a 20 kHz space station primary electrical power distribution system. The converter comprises a transformer, a double-tuned resonant network comprising of series- and parallel-tuned branches, a controlled rectifier, and an output filter. Symmetrical phase control technique that generates fundamental AC current in phase with the input voltage is employed. Steady-state analysis of the converter in continuous current mode of operation is provided, and the performance characteristics presented. The proposed converter has close-to-unity rated power factor (greater than 0.98), a wide range of output voltage control (0%-100%), low total harmonic distortion in input current (less than 8%), and high conversion efficiency. Finally, selected experimental results of a bread-board converter are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call