Abstract

Resource description framework (RDF) stream is useful to model spatio-temporal data. In this paper, we propose a framework for large-scale RDF stream processing, LRSP, to process general continuous queries over large-scale RDF streams. Firstly, we propose a formalization (named CT-SPARQL) to represent the general continuous queries in a unified, unambiguous way. Secondly, based on our formalization we propose LRSP to process continuous queries in a common white-box way by separating RDF stream processing, query parsing, and query execution. Finally, we implement and evaluate LRSP with those popular continuous query engines on some benchmark datasets and real-world datasets. Due to the architecture of LRSP, many efficient query engines (including centralized and distributed engines) for RDF can be directly employed to process continuous queries. The experimental results show that LRSP has a higher performance, specially, in processing large-scale real-world data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.