Abstract

A connected 3 → 3 formalism for three-body collision processes is reduced to a hierarchy of three on-energy-shell integral equations and one off-energy-shell integral equation. Only the on-energy-shell equations, which involve only on-energy-shell three-body and two-body amplitudes, need be solved exactly in order to obtain elastic and break-up amplitudes satisfying the unitarity constraints exactly. Applied to n-d break-up, the on-energy-shell equations ensure that the n-d initial-state interaction, the nucleon-nucleon final-state interactions, and more complicated 3 → 3 processes are correctly described. After angular momentum analysis the on-energy-shell equations are one-dimensional integral equations, even in the case of local two-body potentials. This unitary model provides a practical scheme for calculating approximate three-body elastic and break-up amplitudes when two-body local potentials are used to describe the two-body subsystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call