Abstract

If $\beta_1$ and $\beta_2$ are not identically zero $\sigma$-finite invariant measures for a measurable invertible ergodic transformation $S$ on a measure space, and $\beta_1(E) > 0$ implies $\beta_2(E) > 0$ for measurable sets $E$, then $\beta_2 = c\beta_1$ for some constant $c \neq 0$ ([4], p. 35). In this paper a corresponding result will be proved for stationary measures of a Markov process (Theorem 1). Theorem 1 is a generalization of the corollary of [6], p. 863. In that paper, the authors impose conditions ensuring that the shift transformation has no wandering sets of positive measure, and then they use Hopf's theorem. In Section 3, some new and known results are seen to follow readily from Theorem 1. The recurrence condition introduced by Harris [5] is discussed, and Theorem 1 is used to give a new proof of the uniqueness theorem of [5] independent of the existence of stationary measures, and generalizing the theorem to $\sigma$-fields which are not necessarily separable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.