Abstract

It is proven that the only incompressible Euler fluid flows with fixed straight streamlines are those generated by the normal lines to a round sphere, a circular cylinder or a flat plane, the fluid flow being that of a point source, a line source or a plane source at infinity, respectively. The proof uses the local differential geometry of oriented line congruences to integrate the Euler equations explicitly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.