Abstract
The operator involved in quasiconvex functions is L(u)=min|y|=1,y⋅Du=0yD2uyT and this also arises as the governing operator in a worst case tug-of-war (Kohn and Serfaty (2006) [7]) and principal curvature of a surface. In Barron et al. (2012) [4] a comparison principle for L(u)=g>0 was proved. A new and much simpler proof is presented in this paper based on Barles and Busca (2001) [3] and Lu and Wang (2008) [8]. Since L(u)/|Du| is the minimal principal curvature of a surface, we show by example that L(u)−g|Du|=0 does not have a unique solution, even if g>0. Finally, we complete the identification of first order evolution problems giving the convex envelope of a given function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.