Abstract

The Sri Lankan leopard (Panthera pardus kotiya) is an endangered subspecies restricted to isolated and fragmented populations in Sri Lanka. Among them, melanistic leopards have been recorded on a few occasions. Literature suggests the evolution of melanism several times in the Felidae family, with three species having distinct mutations. Nevertheless, the mutations or other variations in the remaining species, including Sri Lankan melanistic leopard, are unknown. We used reference-based assembled nuclear genomes of Sri Lankan wild type and melanistic leopards and de novo assembled mitogenomes of the same to investigate the genetic basis, adaptive significance, and evolutionary history of the Sri Lankan melanistic leopard. Interestingly, we identified a single nucleotide polymorphism in exon-4 Sri Lankan melanistic leopard, which may completely ablate Agouti Signalling Protein (ASIP) function. The wild type leopards in Sri Lanka did not carry this mutation, suggesting the cause for the occurrence of melanistic leopords in the population. Comparative analysis of existing genomic data in the literature suggests it as a P. p. kotiya specific mutation and a novel mutation in the ASIP-gene of the Felidae family, contributing to naturally occurring colour polymorphism. Our data suggested the coalescence time of Sri Lankan leopards at ~0.5 million years, sisters to the Panthera pardus lineage. The genetic diversity was low in Sri Lankan leopards. Further, the P. p. kotiya melanistic leopard is a different morphotype of the P. p. kotiya wildtype leopard resulting from the mutation in the ASIP-gene. The ability of black leopards to camouflage, along with the likelihood of recurrence and transfer to future generations, suggests that this rare mutation could be environment-adaptable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call