Abstract

Most exposures of humans to environmental agents involve mixtures of chemicals, rather than individual chemicals. Some chemicals can cause hepatocellular proliferation and act as neoplastic promoters. Little is known concerning hepatocellular proliferation caused by chemical mixtures such as those found in groundwater at hazardous waste sites. Therefore, a 6 month study was performed to investigate hepatocellular proliferation and histopathological changes in F344 rats after long-term, low-level exposure to a mixture of groundwater contaminants. The seven chemicals used are among the most frequently detected contaminants associated with hazardous waste sites; arsenic, benzene, chloroform, chromium, lead, phenol and trichloroethylene. Male F344 rats were exposed to this mixture, or submixtures of the organic or inorganic chemicals, via drinking water for 6 months. The study design included a time-course experiment (i.e. 3 and 10 days and 1, 3 and 6 months) and a dose-response experiment. Hepatocellular proliferation studies were performed by subcutaneously implanting osmotic mini-pumps to continuously deliver 5-bromo-2'-deoxyuridine for 7 days, which labeled nuclei of proliferating cells. In all groups, there were no differences in weight gain, body weight, liver weight ratios or liver-associated plasma enzymes. Light microscopic evaluation revealed no lesions related to the treatments in any animals. However, significant increases in hepatocellular labeling were observed at the 3 and 10 day and 1 month exposure time points after treatment with the full mixture, as well as the organic or inorganic submixtures. Proliferating hepatocytes expressed a unique labeling pattern surrounding large hepatic veins (0.5-2.0 mm), but not central veins. This did not appear to be a regenerative response due to cytotoxic mechanisms, as assessed by the absence of increased plasma enzyme activity and the absence of hepatocellular lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.