Abstract

With the increasing interest in photodynamic therapy (PDT), the assessment of the level of reactive oxygen species produced during PDT has also become increasingly important. However, most of the fluorescent probes for reactive oxygen species (ROS) evaluation were separated from photosensitizers in the PDT process, resulting in ex situ and asynchronous treatment feedback. Additionally, the consumption of ROS by these fluorescent probes themselves will inevitably affect the therapeutic effect. Herein, inspired by the redox balance in the cell, we developed a multifunctional hydrogen sulfide (H2S) probe Ru-NBD for reporting the therapeutic effect during the PDT process by detecting hydrogen sulfide. The probe Ru-NBD could not only serve as an effective PDT reagent both before and after H2S activation but could also be used for real-time and in situ monitoring of the therapeutic effect via restored luminescence during the PDT process. As the phototherapy process progresses, the luminescent signal of Ru-NBD changes accordingly. The experimental results show that there is a certain correlation between the luminescence intensity and the cell inhibition rate; thus, we can monitor the phototherapy process by detecting the changes in the probe's luminescent signal. This study provides an idea for the design and adjustment of PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.