Abstract

Among anticancer nanomedicines, squalenoyl nanocomposites have obtained encouraging outcomes in a great variety of tumors. The prodrug squalenoyl-gemcitabine has been chosen in this study to construct a novel multidrug nanosystem in combination with edelfosine, an alkyl-lysophopholipid with proven anticancer activity. Given their amphiphilic nature, it was hypothesized that both anticancer compounds, with complementary molecular targets, could lead to the formation of a new multitherapy nanomedicine. Nanoassemblies were formulated by the nanoprecipitation method and characterized by dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopy. Because free edelfosine is highly hemolytic, hemolysis experiments were performed using human blood erythrocytes and nanoassemblies efficacy was evaluated in a patient-derived metastatic pediatric osteosarcoma cell line. It was observed that these molecules spontaneously self-assembled as stable and monodisperse nanoassemblies of 51 ± 1 nm in a surfactant/polymer free-aqueous suspension. Compared to squalenoyl-gemcitabine nanoassemblies, the combination of squalenoyl-gemcitabine with edelfosine resulted in smaller particle size and a new supramolecular conformation, with higher stability and drug content, and ameliorated antitumor profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.