Abstract

Implantation of DA-3 mammary tumor cells into BALB/c mice results in tumor growth, metastatic lesions, and death. These cells were transfected with genes encoding for either the transmembrane (DA-3/TM) or secreted (DA-3/sec) form of human mucin 1 (MUC1). Although the gene for the secreted form lacks the transmembrane and cytoplasmic domains, the 5' sequences of these mucins are identical; however, the gene for the secreted mucin isoform ends with a sequence encoding for a unique 11 amino acid peptide. The DA-3/TM or DA-3 cells transfected with the neomycin vector only (DA-3/neo) have the same in vivo growth characteristics as the parent cell line. In contrast, DA-3/sec cells fail to grow when implanted in immunocompetent BALB/c animals. DA-3/sec cells implanted in nude mice resulted in tumor development verifying the tumorigenic potential of these cells. Pre-exposure of BALB/c mice to DA-3/sec cells afforded protection against challenge with DA-3/TM or DA-3/neo mammary tumors and the unrelated tumors K7, an osteosarcoma, and RENCA, a renal cell carcinoma. Partial protection against subsequent tumor challenges was also achieved by substituting the 11 amino acid peptide found only in the secreted MUC1 isoform, for the live DA-3/sec cells. Notably, the efficacy of this peptide is not strain restricted because it also retarded the growth of Lewis lung carcinoma cells in C57 BL/6 mice. These findings reveal that a unique peptide present in the secreted MUC1 has immunoenhancing properties and may be a potential agent for use in immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call