Abstract

Typically not assisted by proofreading, the RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses may need to independently control its fidelity to fulfill virus viability and fitness. However, the precise mechanism by which the RdRP maintains its optimal fidelity level remains largely elusive. By solving 2.1–2.5 Å resolution crystal structures of the classical swine fever virus (CSFV) NS5B, an RdRP with a unique naturally fused N-terminal domain (NTD), we identified high-resolution intra-molecular interactions between the NTD and the RdRP palm domain. In order to dissect possible regulatory functions of NTD, we designed mutations at residues Y471 and E472 to perturb key interactions at the NTD–RdRP interface. When crystallized, some of these NS5B interface mutants maintained the interface, while the others adopted an ‘open’ conformation that no longer retained the intra-molecular interactions. Data from multiple in vitro RdRP assays indicated that the perturbation of the NTD–RdRP interactions clearly reduced the fidelity level of the RNA synthesis, while the processivity of the NS5B elongation complex was not affected. Collectively, our work demonstrates an explicit and unique mode of polymerase fidelity modulation and provides a vivid example of co-evolution in multi-domain enzymes.

Highlights

  • Characteristic proteolytic products of the N-91 or products with higher intensity than those of the WT are labeled by solid triangles

  • Proteolytic products of the AA that are either not present in the WT data or with different intensities are labeled by empty triangles

  • The samples loaded in the gel of panel-G and the corresponding samples loaded in gels of panels D-F were from the same reaction but were loaded separately

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call