Abstract

Single-atom catalysts (SACs) exhibit great potential in heterogeneous catalysis. However, the achievement of obtaining high-loading SACs remains a bottleneck. Herein, we first demonstrate a unique gas-migration, trapping, and emitting strategy for building a kind of Cd-based SAC for CO2 reduction (CO2RR). The gas-migration and trapping processes (≤750 °C) endows the material with an ultrahigh Cd loading amount of 30.3 wt %, while the emitting process can facilely modulate the loading amount from 30.3 to 1.4 wt %. For the CO2RR, the Cd-NC SACs with a loading amount of 18.4 wt % exhibits the maximum Faraday efficiency of 91.4% for CO at -0.728 V. The operando infrared spectroscopy studies prove the presence of main intermediates *COO-, *COOH, and *CO on Cd-NC-5M SACs during the catalytic process, indicating that the CO2RR follows the proton-decoupled electron-transfer mechanism. Density functional theory simulations reveal that the Cd-N4 structure reduces the Gibbs free energy of the rate-determining step (the hydrogenation step of *COOH).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.