Abstract

Fe-doped Ni (oxy)hydroxide shows intriguing activity toward oxygen evolution reaction (OER) in alkaline solution, yet it remains challenging to further boost its performance. In this work, a ferric/molybdate (Fe3+ /MoO4 2- ) co-doping strategy is reported to promote the OER activity of Ni oxyhydroxide. The reinforced Fe/Mo-doped Ni oxyhydroxide catalyst supported by nickel foam (p-NiFeMo/NF) is synthesized via a unique oxygen plasma etching-electrochemical doping route, in which precursor Ni(OH)2 nanosheets are first etched by oxygen plasma to form defect-rich amorphous nanosheets, followed by electrochemical cycling to trigger simultaneously Fe3+ /MoO4 2- co-doping and phase transition. This p-NiFeMo/NF catalyst requires an overpotential of only 274mV to reach 100mA cm-2 in alkaline media, exhibiting significantly enhanced OER activity compared to NiFe layered double hydroxide (LDH) catalyst and other analogs. Its activity does not fade even after 72h uninterrupted operation. In situ Raman analysis reveals that the intercalation of MoO4 2- is able to prevent the over-oxidation of NiOOH matrix from β to γ phase, thus keeping the Fe-doped NiOOH at the most active state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call