Abstract

X-ray optics called multilayer Laue lenses (MLLs) provide a promising path to focusing hard X-rays with high focusing efficiency at a resolution between 5 nm and 20 nm. MLLs consist of thousands of depth-graded thin layers. The thickness of each layer obeys the linear zone plate law. X-ray beamline tests have been performed on magnetron sputter-deposited WSi(2)/Si MLLs at the Advanced Photon Source/Center for Nanoscale Materials 26-ID nanoprobe beamline. However, it is still very challenging to accurately grow each layer at the designed thickness during deposition; errors introduced during thickness measurements of thousands of layers lead to inaccurate MLL structures. Here, a new metrology approach that can accurately measure thickness by introducing regular marks on the cross section of thousands of layers using a focused ion beam is reported. This new measurement method is compared with a previous method. More accurate results are obtained using the new measurement approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call