Abstract

It is known that white matter modeling based on commonly used linear diffusion encoding is an ill-posed problem. We analyze the additional information gained from a double pulsed diffusion encoding. Zeroth (spherical means) and second-order (harmonic powers) rotation invariant signal features are used to factor micro- and mesoscopic contributions. The b-value dependency up to second-order of the features form 6 nonlinear equations, which are analyzed. The 6 derived equations can be uniquely solved for all relevant biophysical parameters. No assumptions about the form of the mesoscopic contribution (fiber dispersion) is necessary. Under certain conditions the solution still shows a certain degeneracy which is inherent to model. It is further shown that a combination of second-order information from single and spherical diffusion encoding is not enough to solve the problem. A combination of single and double pulsed diffusion encodings is sufficient to solve the full 3 compartment white matter model uniquely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.