Abstract

This paper unifies the design and the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem for a class of risk functionals ρ that are continuous and dominant. We prove generalised concentration bounds for these continuous and dominant risk functionals and show that a wide class of popular risk functionals belong to this class. Using our newly developed analytical toolkits, we analyse the algorithm ρ-MTS (for multinomial distributions) and prove that they admit asymptotically optimal regret bounds of risk-averse algorithms under the CVaR, proportional hazard, and other ubiquitous risk measures. More generally, we prove the asymptotic optimality of ρ-MTS for Bernoulli distributions for a class of risk measures known as empirical distribution performance measures (EDPMs); this includes the well-known mean-variance. Numerical simulations show that the regret bounds incurred by our algorithms are reasonably tight vis-à-vis algorithm-independent lower bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.