Abstract

Novel driver support systems potentially enhance road safety by cooperating with the human driver. To optimize the design of emerging steering support systems, a profound understanding of driver steering behavior is required. This article proposes a new theory of driver steering, which unifies visual perception and control models. The theory is derived directly from measured steering data, without any a priori assumptions on driver inputs or control dynamics. Results of a human-in-the-loop simulator experiment are presented, in which drivers tracked the centerline of straight and winding roads. Multiloop frequency response function (FRF) estimates reveal how drivers use visual preview, lateral position feedback, and heading feedback for control. Classical control theory is used to model all three FRF estimates. The model has physically interpretable parameters, which indicate that drivers minimize the bearing angle to an “aim point” (located 0.25–0.75 s ahead) through simple compensatory control, both on straight and winding roads. The resulting unifying perception and control theory provides a new tool for rationalizing driver steering behavior, and for optimizing modern steering support systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call