Abstract
Perceptual biases are widely regarded as offering a window into the neural computations underlying perception. To understand these biases, previous work has proposed a number of conceptually different, and even seemingly contradictory, explanations, including attraction to a Bayesian prior, repulsion from the prior due to efficient coding and central tendency effects on a bounded range. We present a unifying Bayesian theory of biases in perceptual estimation derived from first principles. We demonstrate theoretically an additive decomposition of perceptual biases into attraction to a prior, repulsion away from regions with high encoding precision and regression away from the boundary. The results reveal a simple and universal rule for predicting the direction of perceptual biases. Our theory accounts for, and yields, new insights regarding biases in the perception of a variety of stimulus attributes, including orientation, color and magnitude. These results provide important constraints on the neural implementations of Bayesian computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.