Abstract

Genome-wide association studies (GWASs) identify genomic loci associated with complex traits, but it remains a challenge to identify the genes affected by causal genetic variants in these loci. Attempts to solve this challenge are frustrated by a number of compounding problems. Here, we show how to combine solutions to these problems into a unified mathematical framework. From this synthesis, it becomes possible to compute the probability that each gene in the genome is affected by a causal variant, given a particular trait, without making assumptions about the relevant cell types or tissues. We validate each component of the framework individually and in combination. When applied to large GWASs of human disease, the resulting paradigm can rediscover the majority of well-known disease genes. Moreover, it establishes human genetics support for many genes previously implicated only by clinical or preclinical evidence, and it uncovers a plethora of novel disease genes with compelling biological rationale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.