Abstract

Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent χ of the 1/f(χ) component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80-100 Hz) and a decrease in the alpha (9-12 Hz) peaks. Importantly, the peaks' height was correlated with the 1/f(χ) exponent on activation. Control simulation ruled out the possibility that the change in 1/f(χ) exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10-100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.