Abstract
Lateral-eyed afoveate animals use the subcortical accessory optic system to generate accurate responses to full-field optokinetic input. When humans rotate their eyes to pursue a moving target, the visual world sweeps across their retinas, creating a contraversive optokinetic stimulus. Humans have developed a cortical foveal pursuit system that suppresses the perception of this full-field optokinetic motion during active pursuit. When foveal vision is slow to develop in infancy, this phylogenetically old optokinetic system, which is normally operative in the first 2 months of human life, continues to be ontogenetically expressed. Hypothetically, the incursion on cortical pursuit of the antagonistic motion stimulus from this subcortical optokinetic system facilitates development of the unstable oscillatory activity of the eyes that characterizes infantile nystagmus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.