Abstract

Network analysis can help uncover meaningful regularities in the organization of complex systems. Among these, rich clubs are a functionally important property of a variety of social, technological and biological networks. Rich clubs emerge when nodes that are somehow prominent or ‘rich’ (e.g., highly connected) interact preferentially with one another. The identification of rich clubs is non-trivial, especially in weighted networks, and to this end multiple distinct metrics have been proposed. Here we describe a unifying framework for detecting rich clubs which intuitively generalizes various metrics into a single integrated method. This generalization rests upon the explicit incorporation of randomized control networks into the measurement process. We apply this framework to real-life examples, and show that, depending on the selection of randomized controls, different kinds of rich-club structures can be detected, such as topological and weighted rich clubs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.